Thermochemistry of Molecules in the $\mathrm{B}-\mathrm{N}-\mathrm{Cl}-\mathrm{H}$ System: $A b$ Initio Predictions Using the BAC-MP4 Method

Mark D. Allendorf* and Carl F. Melius
Sandia National Laboratories, Livermore, California 94551-0969

Received: September 20, 1996; In Final Form: January 14, 1997^{\otimes}

Abstract

A self-consistent set of thermochemical data for 33 molecules in the $\mathrm{B}-\mathrm{N}-\mathrm{Cl}-\mathrm{H}$ system are obtained from a combination of $a b$ initio electronic structure calculations and empirical corrections. Calculations were performed for both stable and radical species. Good agreement is found between the calculations and experimental heats of formation for most molecules containing B, H, and Cl . In addition, the BAC-MP4 and experimental heats of formation for $\mathrm{H}_{3} \mathrm{~B}: \mathrm{NH}_{3}$ are also in reasonable agreement, suggesting that the bond additivity parameters chosen for $\mathrm{B}-\mathrm{N}$ bonds will provide reasonably accurate heats of formation for compounds containing this type of bond. Transition-state energies for two reactions involving BCl_{3} and NH_{3} are also predicted. Polynomial fits of the predicted thermodynamic data over the $300-4000 \mathrm{~K}$ temperature range are included in the Supporting Information.

I. Introduction

Compounds containing boron and nitrogen have been of interest to chemists for nearly two centuries, with complexes between boron halides and ammonia constituting the first-known examples of coordination compounds. ${ }^{1-3}$ Besides this intrinsic interest, boron-nitrogen chemistry also has practical value and is used to manufacture materials such as ceramic composites, ${ }^{4}$ thin films, ${ }^{5}$ and coatings ${ }^{6}$ of boron nitride. Accurate thermodynamic data are essential both to achieving an in-depth understanding of the chemical reactions in the boron-nitrogen system and for developing and optimizing new industrial processes that make use of this chemistry.

Reliable thermodynamic data are particularly important in modeling the chemical vapor deposition (CVD) of boron nitride, since these processes operate at temperatures up to $2000{ }^{\circ} \mathrm{C} .{ }^{7}$ BCl_{3} and NH_{3} are the most commonly used precursors, ${ }^{8-13}$ although a wide range of both boron- and nitrogen-containing compounds have been used. ${ }^{14}$ It has been shown that BCl_{3} and NH_{3} react in the gas phase at low temperatures (298-350 $\mathrm{K}),{ }^{15,16}$ forming aminodichloroborane $\left(\mathrm{Cl}_{2} \mathrm{BNH}_{2}\right)$. Species containing $\mathrm{B}-\mathrm{N}$ bonds are also observed under CVD conditions ($1173-1373 \mathrm{~K}$)..12,17 These experiments and the predictions of a kinetics model ${ }^{18}$ suggest that gas-phase chemical reactions play an important role in determining which species interact with the deposition surface. Thus, accurate thermochemical data for compounds in the $\mathrm{B}-\mathrm{N}-\mathrm{Cl}-\mathrm{H}$ system are necessary to determine the importance of these reactions and to develop models that can simulate BN CVD processes.

Unfortunately, reliable heats of formation, enthalpies, entropies, and heat capacities are unavailable for almost all compounds in the $\mathrm{B}-\mathrm{N}-\mathrm{Cl}-\mathrm{H}$ series. Thermochemical data based on experimental measurements for most species in the $\mathrm{BH}_{n} \mathrm{Cl}_{m}$ ($n, m=0-3$) series are available, although only the heat of formation of BCl_{3} can be considered well established. These data are thoroughly reviewed elsewhere. ${ }^{19,20}$ There are also numerous high-level calculations of the heats of atomization for $\mathrm{BH}_{n}(n=1-3)$ compounds ${ }^{21-30}$ as well as a recent study of the thermochemistry of molecules in the $\mathrm{BH}_{n} \mathrm{Cl}_{m}(n, m=$ $0-3$) series using the G-2 method. ${ }^{31}$ However, data for

[^0]compounds containing $\mathrm{B}-\mathrm{N}$ bonds are much more sparse; to our knowledge, heats of formation have been measured for only $\mathrm{BN}, \mathrm{H}_{3} \mathrm{~B}: \mathrm{NH}_{3}$, and $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}{ }^{20}$ There are several theoretical treatments reported for molecules with $\mathrm{B}-\mathrm{N}$ bonds, but the objective of these investigations was not to predict thermochemistry for a wide range of compounds. ${ }^{1,32-40}$ Complicating this situation is the fact that the uncertainty in the heat of formation of gas-phase boron atoms, which is required to convert theoretical atomization energies into heats of formation, is larger than what is typical for most gas-phase atomic species. ${ }^{19-21}$

The ability of high-level $a b$ initio calculations to predict heats of formation for gas-phase molecules has been demonstrated in numerous studies published in the last decade. ${ }^{30,31,41-51}$ In our work, we have used $a b$ initio calculations coupled with empirically derived bond-additivity corrections to predict thermochemical quantities for a very large number of first- and second-row elements. This method is known as the BAC-MP4 method (for bond-additivity-corrected-fourth-order MøllerPlesset perturbation theory), and to date we have applied it to first-row compounds ${ }^{48}$ and the $\mathrm{Si}-\mathrm{H},{ }^{44-46} \mathrm{Si}-\mathrm{H}-\mathrm{Cl},{ }^{44,46} \mathrm{Si}-$ $\mathrm{F}-\mathrm{H},{ }^{46} \mathrm{Si}-\mathrm{N}-\mathrm{F}-\mathrm{H},{ }^{49} \mathrm{Si}-\mathrm{C}-\mathrm{H},{ }^{41} \mathrm{Si}-\mathrm{C}-\mathrm{Cl}-\mathrm{H},{ }^{42} \mathrm{Si}-\mathrm{O}-$ $\mathrm{H},{ }^{52,53}$ and $\mathrm{Si}-\mathrm{O}-\mathrm{C}-\mathrm{H}^{47,52}$ systems. In this work, we extend the BAC-MP4 method to compounds in the $\mathrm{B}-\mathrm{N}-\mathrm{Cl}-\mathrm{H}$ system. We also discuss the energetics of several transition states relevant to reactions between BCl_{3} and NH_{3}. To maximize the usefulness of the predicted thermochemical data, we include polynomial fits that describe the temperature dependence of the heat capacity, enthalpy, and entropy for all compounds in the study. The results provide a self-consistent set of thermochemical values that will be useful for future studies of the chemical reactions of this system.

II. Theoretical Methods

We describe the theoretical methods used here in detail in earlier works, ${ }^{46,48}$ so we present only a short description here. Electronic structure calculations were performed using Gaussian $92^{46,48,54}$ and earlier versions of these quantum chemistry codes. Equilibrium geometries and harmonic vibrational frequencies were obtained at the HF/6-31G* level of theory. Restricted Hartree-Fock theory (RHF) ${ }^{55}$ was applied for the closed shell molecules and unrestricted Hartree-Fock theory (UHF) ${ }^{56}$ was

TABLE 1: BAC Parameters for the BAC-MP4 (SDTQ) Level of Theory

bond	$\mathrm{A}_{i j}(\mathrm{MP} 4)^{a}$	$\alpha_{i j}(\mathrm{MP} 4)^{b}$
$\mathrm{~B}-\mathrm{H}$	31.120	2.00
$\mathrm{~B}-\mathrm{N}$	370.100	2.84
$\mathrm{~B}-\mathrm{Cl}$	172.490	2.00
$\mathrm{~N}-\mathrm{H}$		70.08
		$\mathrm{~B}_{k}$
	atom	0.00
	B	0.20
	Nl	0.42
	H	0.00

${ }^{a}$ In kcal mol ${ }^{-1} .{ }^{b}$ In \AA^{-1}.
applied for the open shell molecules, using the $6-31 \mathrm{G}^{*}$ basis set. ${ }^{57,58}$ Vibrational frequencies calculated at this level of theory are known to be systematically larger than experimental values; thus, each calculated frequency was scaled by dividing it by $1.12 .{ }^{58}$

To determine atomization enthalpies and thus heats of formation, the effects of electron correlation are included by performing single-point calculations, using Møller-Plesset perturbation theory and the HF/6-31G* geometries. MP4-(SDTQ)/6-31G** calculations (fourth-order perturbation theory using the $6-31 \mathrm{G}^{* *}$ basis set with single, double, triple, and quadruple substitutions) were performed to obtain electronic energies. This level of theory has been used in most of our previous work; the errors remaining in the total energies are sufficiently systematic that empirical bond additivity corrections can provide enthalpies accurate to a few $\mathrm{kcal} \mathrm{mol}^{-1}$. The form of the BAC parameters $\alpha_{i j}, A_{i j}$, and $B_{i j}$ used to calculate the corrections for individual molecules is given in eqs $1-4$, using the example of a bond between atoms X_{i} and X_{j} in a molecule of the form $X_{k}-X_{i}-X_{j}$:

$$
\begin{equation*}
E_{\mathrm{BAC}}\left(X_{i}-X_{j}\right)=f_{i j} g_{k i j} \tag{1}
\end{equation*}
$$

where

$$
\begin{gather*}
f_{i j}=A_{i j} \exp \left(-\alpha_{i j} R_{i j}\right) \tag{2}\\
g_{k i j}=\left(1-h_{i k} h_{i j}\right) \tag{3}\\
h_{i k}=B_{k} \exp \left\{-\alpha_{i k}\left(R_{i k}-1.4 \AA\right)\right\} \tag{4}
\end{gather*}
$$

$A_{i j}$ and α_{ij} are empirically derived parameters that depend on the $X_{i}-X_{j}$ bond type and $R_{i j}$ is the bond distance (\AA). The factor B_{k} in eq 4 is used to derive a correction for the effects of neighboring atoms on the $X_{i}-X_{j}$ bond (eq 3) and depends on the identity of atom k.

Table 1 lists the parameters $A_{i j}, \alpha_{i j}$, and B_{k} used in this work for each bond type. Parameters for $\mathrm{N}-\mathrm{H}$ bonds were established in previous studies. ${ }^{48,49}$ The values for $\mathrm{B}-\mathrm{Cl}$ bonds were determined by using the heat of formation of BCl_{3} recommended by Gurvich et al. ${ }^{20}$ as a reference, for which the uncertainty is low $\left(\pm 0.3 \mathrm{kcal} \mathrm{mol}{ }^{-1}\right)$. In the case of $\mathrm{B}-\mathrm{H}$ bonds, since uncertainties in the recommended heats of formation for BH_{n} ($n=1-3$) compounds are large (see discussion below), we determined the $\mathrm{B}-\mathrm{H}$ bond correction by using the heat of atomization for BH_{3} obtained from a G-2 calculation as a reference. Values of A and α for $\mathrm{B}-\mathrm{N}$ "single" bonds were determined by using the heat of formation of borazole $\left(\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}\right)$ recommended by Gurvich et al. ${ }^{20}$ as a reference (note that, for compounds such as $\mathrm{H}_{2} \mathrm{BNH}_{2}$, the order of these bonds actually approaches 2; see, for example, Dill et al. ${ }^{40}$ and the discussion in section III). Although the uncertainty in this value is fairly
high ($\pm 3 \mathrm{kcal} \mathrm{mol}^{-1}$), it is lower than that reported for $\mathrm{H}_{3} \mathrm{~B}$: NH_{3}. Complexes such as $\mathrm{H}_{3} \mathrm{~B}: \mathrm{NH}_{3}$ are also unsuitable as references since the effectiveness of the BAC-MP4 method for compounds of this type has not been adequately characterized. An additional advantage of using borazole instead of BN as a reference compound, which has three $\mathrm{B}-\mathrm{N}$ bonds, is that it minimizes the accumulation of errors that results when multiple corrections are applied to molecules with more than one $\mathrm{B}-\mathrm{N}$ bond. In the case of unsaturated BN compounds, the only compound for which experimental data exist is BN. Unfortunately, the uncertainties in recommended heats of formation ${ }^{19,20}$ are very high ($14-30 \mathrm{kcal} \mathrm{mol}^{-1}$). Thus, corrections for higher order $\mathrm{B}-\mathrm{N}$ bonds were determined by using, as a reference, the heat of atomization of HBNH predicted by a G-2 calculation.

Table 2 lists calculated bond lengths for each species, as well as the MP4(SDTQ) BACs corresponding to each bond in the molecule and any spin corrections. ${ }^{46}$ The sum of the BACs is combined with the MP4(SDTQ) electronic energy and the unscaled zero-point energy to obtain the heats of atomization and formation at $0 \mathrm{~K}\left(\sum D_{0}\right.$ and $\Delta H_{\mathrm{f}}{ }^{\circ}(0 \mathrm{~K})$, respectively). Entropies, heat capacities, enthalpies, and free energies as a function of temperature were calculated using the heats of formation at 0 K , equations derived from statistical mechanics, and the calculated geometries and scaled frequencies. For consistency with our earlier reports, ${ }^{41-49}$ the unscaled frequencies are used for determining $\Delta H_{\mathrm{f}}{ }^{\circ}(0 \mathrm{~K})$, while the scaled frequencies are used to calculate thermochemistry at higher temperatures. Minor differences that would result from using the scaled frequencies to calculate $\Delta H_{\mathrm{f}}{ }^{\circ}(0)$ are incorporated into the BACs.

To obtain heats of formation from the calculated atomization energies, the heat of formation for each atom type in a given compound is required. Values used here for H, N, and Cl atoms are given in Table 4 and were taken from the JANAF Tables. ${ }^{19}$ The heat of formation of gas-phase boron atoms is a matter of some debate. The value quoted in the JANAF Tables ($\Delta H_{\mathrm{f}}{ }^{\circ}(298$ $\mathrm{K})=133.8 \pm 2.9 \mathrm{kcal} \mathrm{mol}^{-1}$) has a high uncertainty relative to the heats of formation for the other atoms. Schlegel and Harris, in their recent G-2 calculations, ${ }^{31}$ used the value of 137.4 kcal mol $^{-1}$ (298 K) reported by Storms and Mueller; ${ }^{59}$ calculations by Ochterski et al. ${ }^{21}$ using the complete basis set (CBS) method predict a value $\left(136.9 \pm 0.7 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ that is in agreement with the measurements of Storms and Mueller. However, wall interactions described by Storms and Mueller may affect the accuracy of their measurement. ${ }^{60}$ In this study, we use the value recommended by Gurvich et al. ($\Delta H_{\mathrm{f}}{ }^{\circ}(298$ $\left.\mathrm{K})=135 \pm 1 \mathrm{kcal} \mathrm{mol}^{-1}\right),{ }^{20}$ which is based on a critical evaluation of experimental data in the literature. This value is in excellent agreement with the one recommended by Nordine et al. $\left(\Delta H_{\mathrm{f}}{ }^{\circ}(298 \mathrm{~K})=134.8 \pm 0.5 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ that is the average of experimental results obtained under conditions that eliminate wall effects. ${ }^{61}$ It should be noted that the atomic heats of formation have no effect on calculated reaction enthalpies, since these involve energy differences. However, if thermodynamic data derived from more than one source are used to calculate reaction enthalpies, one must ensure that values of the atomic heats of formation are the same in all cases; otherwise, systematic errors will arise.

There are two major sources of uncertainty in the calculated heats of formation: uncertainties resulting from the applicability of the theoretical methods to a given molecule and systematic uncertainties resulting from lack of good reference compounds for the BACs. The magnitude of the first is estimated using an ad hoc method developed previously that uses the results from lower level calculations ${ }^{46}$ and is reported in Table 4. The second

TABLE 2: Bond Additivity Corrections for the MP4(SDTQ) Level of Theory (kcal mol ${ }^{-1}$)

${ }^{a} \mathrm{u}$, UHF-unstable correction; s, spin-contamination correction. ${ }^{b}$ In angstroms. ${ }^{c}$ Number of bonds.
source of uncertainty, lack of good reference compounds, can add a few $\mathrm{kcal} \mathrm{mol}^{-1}$ to the uncertainty estimates and will scale with the number of bonds in the molecule. The use of different reference values would shift our calculated heats of formation as a group, with the consequence that calculated bond dissociation enthalpies and reaction enthalpies are affected less than the heats of formation. Overall, we believe that the uncertainties in the BAC-MP4 heats of formation lie in the $3-7 \mathrm{kcal} \mathrm{mol}^{-1}$ range.

III. Results

The results of applying the BAC-MP4 method to species in the $\mathrm{B}-\mathrm{N}-\mathrm{Cl}-\mathrm{H}$ system are given in Tables 3-6. As in previous papers in this series, we focus the discussion of this paper on the predicted thermochemical parameters, rather than on the $a b$ initio calculations themselves. Consequently, more detailed information from the calculations, including geometries from the Hartree-Fock calculations, total energies obtained
from perturbation theory, and vibrational frequencies, is reserved for the Supporting Information (described in the Appendix to this paper).

Before proceeding to a discussion of the calculated heats of formation and bond dissociation energies, it is useful to compare the atomization energies obtained from the BAC-MP4 method with those reported by other investigators at various levels of theory (Table 3). Although these data represent basis sets of different size and a variety of approximations, it is evident that the range of values predicted by the various methods is very small for both closed and open shell molecules. Averaging the values for each compound yields standard deviations on the order of $1 \mathrm{kcal} \mathrm{mol}^{-1}$. In the case of BH_{3}, if the value obtained from the lowest level of theory ($266.9 \mathrm{kcal} \mathrm{mol}^{-1}$) is discarded, the standard deviation of the BH_{3} atomization energies is only $0.6 \mathrm{kcal} \mathrm{mol}^{-1}$. This suggests that the ab initio methods developed over the last 10 years to predict thermochemical data, which typically employ Møller-Plesset perturbation theory, are

TABLE 3: Calculated $\Delta H_{\mathrm{f}}{ }^{\circ}(0 \mathrm{~K})$ and ΣD_{0} for $\mathrm{B}-\mathrm{N}-\mathrm{Cl}-\mathrm{H}$ Compounds at Various Levels of Theory (kcal mol ${ }^{-1}$)

species	MP4	BAC-MP2	BAC-MP3	$\begin{gathered} \text { BAC-MP4 } \\ \text { (SDQ) } \end{gathered}$	$\begin{aligned} & \text { BAC-MP4 } \\ & \text { (SDTQ) } \end{aligned}$	$\sum D_{0}(0 \mathrm{~K})$	ΣD_{0}, literature
BH_{3}	32.1	23.4	23.4	23.4	23.4	265.3	$\begin{aligned} & 263.7^{a} ; 264.3^{b} ; 264.4^{c} ; 265.0^{d} ; \\ & 265.3^{e f . e} ; 265.3 \pm 1.7^{g} ; 266.9^{h} \end{aligned}$
BH_{2}	81.5	73.7	75.0	75.5	75.6	161.4	$\begin{aligned} & 159.2^{b} ; 159.4^{i} ; 159.7^{a} ; 159.8^{c} ; \\ & 160.1^{e \cdot f} ; 161.1^{h} \end{aligned}$
BH (${ }^{1}$)	109.2	104.1	102.5	101.8	101.7	83.7	$\begin{aligned} & 78.2 \pm 0.9^{j} ; 79.6 \pm 1.2^{k} ; 80.9^{h} ; \\ & 81.5^{l, m} ; 82.4 \pm 0.1 ; 82.8^{e} \end{aligned}$
BCl_{3}	-82.0	-96.5	-96.1	-96.5	-96.5	316.0	$316.0^{k} ; 320.1^{e}$
BHCl_{2}	-46.9	-59.4	-59.7	-59.8	-59.9	302.5	$302.1{ }^{k}$; 304.9^{e}
$\mathrm{BH}_{2} \mathrm{Cl}$	-8.2	-18.8	-19.1	-19.2	-19.3	284.9	284.1 ${ }^{k}$; $286.1^{\text {e }}$
BCl_{2}	2.7	-8.5	-8.1	-7.9	-7.8	198.7	200.3e; 205.8 ± 2.9^{k}
HBCl	40.7	31.3	31.9	32.2	32.2	181.8	$181.9^{e} ; 182.8 \pm 4.8^{k}$
BCl	48.4	46.1	44.6	43.9	43.0	119.4	$121.9 \pm 4.8^{k} ; 123.0^{e} ; 127^{j}$
$\mathrm{H}_{3} \mathrm{~B}: \mathrm{NH}_{3}$	24.1	-13.7	-14.0	-14.5	-15.5	571.6	579.3 ± 3.8^{k}
$\mathrm{H}_{2} \mathrm{BNH}_{2}$	11.7	-19.6	-20.1	-20.3	-20.3	473.2	
$\mathrm{H}_{2} \mathrm{BNH}$	69.5	48.3	46.7	46.1	46.1	355.1	
HBNH_{2}	62.6	31.9	32.4	32.8	33.1	368.2	
$\mathrm{B}\left(\mathrm{NH}_{2}\right)_{2}$	57.9	4.8	4.8	5.5	6.3	559.1	
HBNH	36.1	11.0	11.8	11.8	11.8	337.8	
BNH_{2}	79.0	51.6	49.8	49.7	49.6	300.0	
$\mathrm{H}_{2} \mathrm{BN}$	116.0	106.0	104.2	103.8	103.9	245.7	
BNH	93.8	66.9	69.1	69.6	70.1	227.9	
HBN ($\left.{ }^{(} \Pi\right)$	108.0	95.8	94.4	94.6	94.5	203.4	
BN	150.6	148.6	173.9	154.4	139.6	106.7	$112 \pm 14^{k} ; 131^{j}$
$\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$	-42.3	-115.6	-115.7	-115.6	-115.7	1164.4	1165.0 ± 4.8^{k}
$\mathrm{Cl}_{3} \mathrm{~B}: \mathrm{NH}_{3}$	-86.4	-130.9	-128.2	-128.5	-130.0	645.5	
$\mathrm{Cl}_{3} \mathrm{~B}: \mathrm{NH}_{3} \rightarrow \mathrm{Cl}_{2} \mathrm{BNH}_{2}+\mathrm{HCl}$	-47.6	-92.6	-91.0	-90.7	-91.5	607.1	
$\mathrm{H}_{3} \mathrm{~N}: \mathrm{BCl}_{2} \mathrm{NH}_{2}$	-51.1	-115.5	-112.9	-112.8	-114.5	788.7	
HClBNH_{2}	-26.8	-60.3	-60.9	-60.8	-60.4	490.3	
$\mathrm{Cl}_{2} \mathrm{BNH}_{2}$	-62.2	-97.6	-98.3	-97.9	-97.2	504.0	
$\mathrm{Cl}_{2} \mathrm{BNH}_{2} \rightarrow \mathrm{ClBNH}+\mathrm{HCl}$	15.5	-20.5	-20.4	-19.4	-19.0	425.8	
$\mathrm{ClB}\left(\mathrm{NH}_{2}\right)_{2}$	-32.3	-88.3	-89.3	-88.8	-87.7	681.6	
$\mathrm{HB}\left(\mathrm{NH}_{2}\right)_{2}$	5.8	-48.1	-48.9	-48.8	-48.3	665.4	
$\mathrm{B}\left(\mathrm{NH}_{2}\right)_{3}$	5.6	-70.4	-71.3	-70.9	-69.8	851.0	
$\mathrm{Cl}_{2} \mathrm{BNH}$	2.4	-23.3	-25.8	-25.8	-24.6	379.7	
ClBNH_{2}	24.7	-7.8	-7.8	-7.1	-6.5	384.7	
ClBNH	7.5	-19.1	-20.2	-19.7	-18.3	344.9	
$\mathrm{Cl}_{2} \mathrm{BN}$	39.4	26.0	23.9	23.5	23.8	279.7	
BNCl_{2}	136.3	109.5	107.0	105.3	105.7	197.8	
ClBN	74.8	61.3	58.6	58.9	59.5	215.4	

${ }^{a}$ CBS-4 calculation. See ref 21. ${ }^{b}$ MP4/QCI calculation. See ref 22. ${ }^{c}$ CBS-Q calculation. See ref 21. ${ }^{d}$ MP4/6-311G++ calculation. See ref 23. ${ }^{e}$ G-2 calculation. See ref 31. ${ }^{f}$ G-2 calculation. See ref $24 .{ }^{g}$ Photoionization experiment. See ref 61. ${ }^{h}$ MP4/6-31G(d) calculation. See ref 25. ${ }^{i} \mathrm{CCD}+\mathrm{ST}(\mathrm{CCD})$ calculation. See ref $26 .{ }^{j}$ See ref $19 .{ }^{k}$ See ref $20 .{ }^{l}$ See ref $27 .{ }^{m}$ See ref 28.
of comparable accuracy. Differences in excess of $1 \mathrm{kcal} \mathrm{mol}^{-1}$ among heats of formation predicted by these methods are likely caused by other factors, in particular the use of different values of the atomic heats of formation in the conversion of ΣD_{0} to a heat of formation.

A. Heats of Formation and Bond Dissociation Energies.

 Table 3 lists $\Delta H_{\mathrm{f}}{ }^{\circ}(0 \mathrm{~K})$ at various levels of theory and provides a measure of calculational accuracy. In almost all cases, $\Delta H_{\mathrm{f}}{ }^{\circ}(0$ K) converges to an approximately constant value, indicating that errors in the calculation are likely to be small. The one exception to this is BN, for which the MP perturbation series did not converge, resulting in a very large uncertainty in the predicted heat of formation (Table 4). The literature values listed in Table 3 are discussed below (section III.B).Calculated heats of formation at $298 \mathrm{~K}\left(\Delta H_{\mathrm{f}}{ }^{\circ}(298 \mathrm{~K})\right)$ are shown in Table 4 with error estimates calculated by the ad hoc approach discussed above. Additional heats of formation needed to calculate bond dissociation energies and to illustrate trends are also included for reference in this table. Table 5 lists $\Delta S^{\circ}(298 \mathrm{~K})$ and values of $\Delta G_{\mathrm{f}}{ }^{\circ}$ at various temperatures. Table 4 also includes available measured and calculated values from the literature. Although comparison of these values with our BAC-MP4 results is discussed below, it is important to note here that, while a reasonable body of theoretical and experimental data exists for establishing the accuracy of the BAC-

MP4 method for compounds in the $\mathrm{B}-\mathrm{H}-\mathrm{Cl}$ system, the amount of data for compounds containing $\mathrm{B}-\mathrm{N}$ bonds is much smaller. This lead us to use the result of a G-2 calculation to establish the BAC for $\mathrm{B}-\mathrm{N}$ multiple bonds (section II). Thus, to lend additional confidence to our predictions, we performed a G-2 calculation for the molecule $\mathrm{H}_{2} \mathrm{BNH}_{2}$. The predicted $\Delta H_{\mathrm{f}}{ }^{\circ}(298 \mathrm{~K})$ is $-21.5 \mathrm{kcal} \mathrm{mol}^{-1}$, which is in reasonable agreement with the BAC-MP4 prediction of $-23.2 \mathrm{kcal} \mathrm{mol}^{-1}$. The somewhat more negative value obtained from the BACMP4 calculation is expected, since the BAC for $\mathrm{B}-\mathrm{N}$ single bonds is based on $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$, resulting in a slight overcorrection for molecules with only one $\mathrm{B}-\mathrm{N}$ bond.

Bond dissociation energies (BDE) for selected compounds examined in this study are given in Table 6. The calculations show that $\mathrm{B}-\mathrm{H}$ bonds for filled shell compounds are nearly unaffected by the replacement of neighboring hydrogen atoms with chlorine, in agreement with a previous discussion of the BDEs for $\mathrm{BH}_{m} \mathrm{Cl}_{n}$ compounds. ${ }^{31}$ This is also the case when H is replaced by an NH_{2} group, indicating that changes in electron density at boron induced by neighboring groups are not large. A comparison with other first-row hydrides shows that $\mathrm{B}-\mathrm{H}$ bonds in closed shell boranes are comparable in strength to $\mathrm{C}-\mathrm{H}$ bonds in alkanes, but are weaker than those formed with more electronegative atoms (e.g., $\operatorname{BDE}\left(\mathrm{BH}_{3}\right)=105.3, \operatorname{BDE}\left(\mathrm{CH}_{4}\right)=$ $104.9, \operatorname{BDE}\left(\mathrm{NH}_{3}\right)=109.1 \mathrm{kcal} \mathrm{mol}^{-1}, \operatorname{BDE}\left(\mathrm{H}_{2} \mathrm{O}\right)=119.4 \mathrm{kcal}$

TABLE 4: $\Delta H_{\mathrm{f}}{ }^{\circ}(298 \mathrm{~K})$ for the BAC-MP4(SDTQ) Level of Theory with Error Estimates and Literature Values for $\mathrm{B}-\mathrm{N}-\mathrm{Cl}-\mathrm{H}$ Compounds (kcal mol ${ }^{-1}$)

species	$\Delta H_{\mathrm{f}}{ }^{\circ}$	experiment/compilation	other theory
$\mathrm{BH}_{3}{ }^{\text {a }}$	22.35 ± 1.00	$25.5 \pm 2.4^{b} ; 23.80^{h} ; 21 \pm 2.4^{i}$	$24.89^{c} ; 22.3 \pm 3.3^{d} ; 11.7^{g} ; 19.7^{j}$
BH_{2}	75.55 ± 1.16	$48.0 \pm 15^{b} ; 45.71^{h} ; 76.1 \pm 2.6^{i}$	$79.43^{c} ; 76.5 \pm{ }^{d} ; 66.5^{g} ; 74.8^{j}$
BH (${ }^{1}$)	102.39 ± 1.60	$105.8 \pm 2.0^{b} ; 108.24^{h} ; 106.6 \pm 1.7^{i}$	$105.83{ }^{c} ; 105.1 \pm 3^{d} ; 72.1^{g} ; 104.1^{j}$
$\mathrm{BCl}_{3}{ }^{\text {a }}$	-96.69 ± 1.05	$-96.3 \pm 0.5^{b} ;-97.50^{h} ;-96.68 \pm 0.31^{i}$	$-98.63^{c} ;-97.0^{e}$
BHCl_{2}	-60.59 ± 1.02	$-59.3 \pm 1.0^{b} ;-60.52^{h} ;-60.2 \pm{ }^{i}$	$-60.68^{c} ;-60.7^{e}$
$\mathrm{BH}_{2} \mathrm{Cl}$	-20.29 ± 1.02	$-19.3 \pm 4.8{ }^{i}$	$-18.98^{\text {c }}$
BCl_{2}	-7.53 ± 1.07	$-19.0 \pm 3.0^{b} ;-14.6 \pm 2.4^{h}$	$-6.79{ }^{\text {c }}$
HBCl	32.22 ± 1.07	31.27 ± 5.0^{i}	$34.53{ }^{\text {c }}$
BCl	43.71 ± 2.03	$33.8 \pm 4^{b} ; 36.01^{h} ; 41.2 \pm 6.0^{i}$	$42.52^{c} ; 13.5{ }^{e}$
$\mathrm{H}_{3} \mathrm{~B}: \mathrm{NH}_{3}$	-19.95 ± 2.02	-27.5 ± 3.6^{i}	-21.70^{f}
$\mathrm{H}_{2} \mathrm{BNH}_{2}$	-23.19 ± 1.02		$-26.87{ }^{f} ;-14^{k} ;-21.49^{l}$
$\mathrm{H}_{2} \mathrm{BNH}$	44.58 ± 1.18		
HBNH_{2}	31.18 ± 1.20		
$\mathrm{B}\left(\mathrm{NH}_{2}\right)_{2}$	3.29 ± 1.95		
HBNH^{a}	10.95 ± 1.00		$1.41^{f} ; 31^{m}$
BNH_{2}	48.85 ± 1.18		
$\mathrm{H}_{2} \mathrm{BN}$	102.93 ± 1.05		
BNH	70.03 ± 1.59		
HBN (${ }^{2} \Pi$)	94.32 ± 1.03		
BN	140.30 ± 37.35	$114 \pm 29.9^{b} ; 134.8 \pm 14^{i}$	
$\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}{ }^{\text {a }}$	-121.98 ± 1.00	$-121.9 \pm 3.1^{b} ;-122.4 \pm 3.1^{i}$	
$\mathrm{Cl}_{3} \mathrm{~B}: \mathrm{NH}_{3}$	-133.01 ± 2.49		
$\mathrm{Cl}_{3} \mathrm{~B}: \mathrm{NH}_{3} \rightarrow \mathrm{Cl}_{2} \mathrm{BNH}_{2}+\mathrm{HCl}$	-94.72 ± 1.35		
$\mathrm{H}_{3} \mathrm{~N}: \mathrm{BCl}_{2} \mathrm{NH}_{2}$	-119.09 ± 2.48		
HClBNH_{2}	-63.01 ± 1.17		
$\mathrm{Cl}_{2} \mathrm{BNH}_{2}$	-99.27 ± 1.67		
$\mathrm{Cl}_{2} \mathrm{BNH}_{2} \rightarrow \mathrm{ClBNH}+\mathrm{HCl}$	-20.88 ± 1.83		
$\mathrm{ClB}\left(\mathrm{NH}_{2}\right)_{2}$	91.30 ± 2.24		
$\mathrm{HB}\left(\mathrm{NH}_{2}\right)_{2}$	52.44 ± 1.24		
$\mathrm{B}\left(\mathrm{NH}_{2}\right)_{3}$	-74.58 ± 2.08		
$\mathrm{Cl}_{2} \mathrm{BNH}$	-25.71 ± 1.98		
ClBNH_{2}	-8.05 ± 1.74		
ClBNH	-18.94 ± 2.57		
$\mathrm{Cl}_{2} \mathrm{BN}$	23.52 ± 1.06		
BNCl_{2}	105.71 ± 1.80		
CIBN	59.65 ± 1.50		
NH_{3}	-10.98		
NH_{2}	46.05		
NH	87.03		
N	112.97		
Cl	28.98		
H	52.07		
B ($\left.{ }^{2} \mathrm{P}\right)$	134.93		

[^1]$\left.\mathrm{mol}^{-1}, \mathrm{BDE}(\mathrm{HF})=136.3 \mathrm{kcal} \mathrm{mol}{ }^{-1}\right)$. $\mathrm{B}-\mathrm{H}$ bonds in BH_{2} and HBCl are much weaker than in the closed shell boranes and point to the relative stability of the BH molecule ($\mathrm{BDE}(\mathrm{BH}$) $=84.3 \mathrm{kcal} \mathrm{mol}^{-1}$). For similar reasons, the $\mathrm{B}-\mathrm{H}$ bond in $\mathrm{H}_{2} \mathrm{BNH}$ is extremely weak; its dissociation energy of only 18.4 $\mathrm{kcal} \mathrm{mol}{ }^{-1}$ is due to the stability of HBNH , which is an analogue of acetylene.

In contrast, boron-chlorine bonds are considerably stronger than carbon-chlorine bonds, with values ranging from 118.1 $\mathrm{kcal} \mathrm{mol}{ }^{-1}$ in BCl_{3} to $124.8 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ in $\mathrm{BH}_{2} \mathrm{Cl}$. By comparison, the $\mathrm{C}-\mathrm{Cl} \mathrm{BDE}$ in $\mathrm{CH}_{3} \mathrm{Cl}$ is only $84 \mathrm{kcal} \mathrm{mol}^{-1}$. The decrease in the BDE as the number of chlorines increases has been attributed to competition for the empty $p-\pi$ orbital on the boron atom by the π-bonding electrons in the 2 p orbitals of the chlorine atoms. ${ }^{31}$ BAC-MP4 predicts a BDE at 0 K for BCl of $119.4 \pm 2.0 \mathrm{kcal} \mathrm{mol}^{-1}$, which is in excellent agreement with a recent experimental measurement $(121.3 \pm 1.1 \mathrm{kcal}$ mol^{-1}) by Hildenbrand. ${ }^{62}$ This also agrees with previously reported G-2 calculations, ${ }^{31}$ in which the BDE of BCl is predicted to be considerably larger than that of BH (120.3 vs $84.7 \mathrm{kcal} \mathrm{mol}^{-1}$), due to the ability of chlorine to form π bonds.

A corresponding weakness is also predicted for $\mathrm{B}-\mathrm{X}$ bonds in CIBX ($\mathrm{X}=\mathrm{H}, \mathrm{Cl}$, or NH_{2}) compounds due to the relative stability of BCl .

Boron-nitrogen bonds are predicted to be quite strong in both the closed shell and unsaturated species. For example, $\mathrm{B}-\mathrm{N}$ BDEs in the $\mathrm{B}\left(\mathrm{NH}_{2}\right)_{n} \mathrm{H}_{3-n}(n=1-3)$ series are as high as $144.8 \mathrm{kcal} \mathrm{mol}^{-1}\left(\mathrm{H}_{2} \mathrm{BNH}_{2}\right)$. Boron-nitrogen bonds in the unsaturated XBNH species ($\mathrm{X}=\mathrm{H}$ or Cl) are even stronger; for example, the $\mathrm{B}-\mathrm{N}$ BDE in HBNH is predicted to be nearly $180 \mathrm{kcal} \mathrm{mol}^{-1}$. The high strength of these bonds can be understood by recognizing that these compounds are analogous to stable, unsaturated hydrocarbons. For example, $\mathrm{H}_{2} \mathrm{BNH}_{2}$ is isoelectronic with $\mathrm{C}_{2} \mathrm{H}_{4}\left(\mathrm{C}-\mathrm{C} \mathrm{BDE}=173 \mathrm{kcal} \mathrm{mol}^{-1}\right)$, while HBNH is isoelectronic with $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{C}-\mathrm{C}$ BDE $=229.7 \mathrm{kcal}$ mol^{-1}). Both boron compounds have geometries that are similar to their hydrocarbon counterparts. The analogy with hydrocarbons is clearly not perfect, however; $\mathrm{B}-\mathrm{N}$ bonds are considerably weaker than their $\mathrm{C}-\mathrm{C}$ analogues, which is likely due to their polar nature. ${ }^{63}$ It is unlikely, for example, that a true double bond exists in $\mathrm{H}_{2} \mathrm{BNH}_{2}$. Consistent with previous calculations, ${ }^{39,40}$ the calculated barrier to rotation about this bond

TABLE 5: Thermochemical Parameters at Various Temperatures (K)

species	$\frac{\Delta H_{\mathrm{f}}{ }^{\circ}{ }^{a}}{298}$	$\frac{S^{\circ} b}{298}$	$\Delta G_{\mathrm{f}}{ }^{\circ}{ }^{a}$					
			300	600	1000	1500	2000	2500
BH_{3}	22.4	45.01	23.3	24.7	27.5	31.2	35.1	39.4
BH_{2}	75.5	46.42	71.4	67.4	62.8	57.1	51.9	47.2
BH ($\left.{ }^{1} \Sigma\right)$	102.4	41.03	95.2	87.9	78.7	67.2	56.1	45.7
BCl_{3}	-96.7	69.46	-93.2	-89.8	-85.1	-79.6	-73.9	-67.7
BHCl_{2}	-60.6	64.23	-58.8	-56.9	-53.8	-50.1	-46.2	-41.8
$\mathrm{BH}_{2} \mathrm{Cl}$	-20.3	56.09	-19.4	-18.1	-15.6	-12.5	-9.2	-5.4
BCl_{2}	-7.5	64.76	-10.6	-13.7	-17.4	-22.2	-26.5	-30.3
HBCl	32.2	57.39	28.1	24.1	19.3	13.3	7.8	2.9
BCl	43.7	51.02	36.8	29.8	20.9	9.7	-1.0	-11.0
$\mathrm{H}_{3} \mathrm{~B}: \mathrm{NH}_{3}$	-19.9	58.30	-2.2	16.8	43.6	76.6	109.2	141.6
$\mathrm{H}_{2} \mathrm{BNH}_{2}$	-23.2	54.78	-13.7	-3.4	11.5	30.0	48.4	67.0
$\mathrm{H}_{2} \mathrm{BNH}$	44.6	59.99	47.9	51.2	56.3	62.2	68.3	74.6
HBNH_{2}	31.2	56.55	35.5	40.3	47.7	56.8	66.0	75.5
$\mathrm{B}\left(\mathrm{NH}_{2}\right)_{2}$	3.3	64.71	16.7	30.6	49.9	73.6	97.0	120.5
HBNH	11.0	41.62	15.1	19.4	25.9	33.9	42.3	51.1
BNH_{2}	48.8	53.18	49.5	50.4	52.3	54.7	57.4	60.6
$\mathrm{H}_{2} \mathrm{BN}$	102.9	55.26	103.0	103.3	104.4	105.7	107.1	108.9
BNH	70.0	50.14	66.9	63.9	60.2	55.5	51.1	47.3
HBN (${ }^{2}$ П)	94.3	49.91	91.3	88.4	84.9	80.3	76.0	72.2
BN	140.3	47.03	133.5	126.6	117.8	106.9	96.4	86.6
$\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$	-122.0	69.64	-93.0	-62.8	-20.7	30.6	81.7	133.1
$\mathrm{Cl}_{3} \mathrm{~B}: \mathrm{NH}_{3}$	-133.0	79.63	-111.7	-90.0	-60.6	-24.8	10.5	45.5
$\mathrm{Cl}_{3} \mathrm{~B}: \mathrm{NH}_{3} \rightarrow \mathrm{Cl}_{2} \mathrm{BNH}_{2}+\mathrm{HCl}$	-94.7	82.47	-74.3	-53.2	-24.3	11.5	47.1	82.7
$\mathrm{H}_{3} \mathrm{~N}: \mathrm{BCl}_{2} \mathrm{NH}_{2}$	-119.1	83.61	-90.8	-61.7	-22.4	25.3	72.3	118.7
HClBNH_{2}	-63.0	64.43	-53.1	-42.6	-27.8	-9.6	8.5	26.9
$\mathrm{Cl}_{2} \mathrm{BNH}_{2}$	-99.3	70.61	-87.9	-76.3	-60.3	-40.8	-21.5	-2.1
$\mathrm{Cl}_{2} \mathrm{BNH}_{2} \rightarrow \mathrm{ClBNH}+\mathrm{HCl}$	-20.9	75.02	-10.8	-0.5	14.0	31.7	49.6	67.8
$\mathrm{ClB}\left(\mathrm{NH}_{2}\right)_{2}$	-91.3	72.72	-72.4	-52.9	-26.5	5.8	37.8	69.6
$\mathrm{HB}\left(\mathrm{NH}_{2}\right)_{2}$	-52.4	63.53	-34.1	-14.8	11.8	44.5	76.7	108.8
$\mathrm{B}\left(\mathrm{NH}_{2}\right)_{3}$	-74.6	77.39	-48.8	-22.3	13.6	57.4	100.4	143.0
$\mathrm{Cl}_{2} \mathrm{BNH}$	-25.7	73.06	-19.7	-13.6	-5.0	5.6	16.6	28.0
ClBNH_{2}	-8.1	65.18	-3.0	2.3	10.1	19.6	29.1	39.0
ClBNH	-18.9	58.34	-16.5	-14.1	-10.8	-7.0	-3.01.3	
$\mathrm{Cl}_{2} \mathrm{BN}$	23.5	71.37	25.3	27.1	29.4	31.8	34.4	37.4
BNCl_{2}	105.7	70.75	107.7	109.6	112.0	114.7	117.5	120.7
CIBN	59.7	58.40	57.4	55.0	52.0	47.9	44.1	40.8

${ }^{a}$ In kcal mol ${ }^{-1} .{ }^{b}$ In cal $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$.
TABLE 6: Calculated Bond Dissociation Enthalpies (BDE) at 298 K for Selected Compounds in the $\mathbf{B}-\mathbf{N}-\mathbf{C l}-\mathbf{H}$ System (kcal mol^{-1})

$\mathrm{B}-\mathrm{N}$ bond	BDE	$\mathrm{N}-\mathrm{H}$ bond	BDE	B-H bond	BDE	$\mathrm{B}-\mathrm{Cl}$ bond	BDE
$\mathrm{H}_{3} \mathrm{~B}: \mathrm{NH}_{3}$	31.3						
$\mathrm{H}_{2} \mathrm{BNH}_{2}$	144.8	$\mathrm{H}_{2} \mathrm{BNH}_{2}$	119.8	$\mathrm{H}_{2} \mathrm{BNH}_{2}$	106.4		
$\mathrm{HB}\left(\mathrm{NH}_{2}\right)_{2}$	129.7			$\mathrm{HB}\left(\mathrm{NH}_{2}\right)_{2}$	107.8		
$\mathrm{B}\left(\mathrm{NH}_{2}\right)_{3}$	123.9						
$\mathrm{H}_{2} \mathrm{BNH}$	118.0	$\mathrm{H}_{2} \mathrm{BNH}$	110.4	$\mathrm{H}_{2} \mathrm{BNH}$	18.4		
HBNH	178.5	HBNH	135.4	HBNH	111.2		
$\mathrm{H}_{2} \mathrm{BN}$	85.6			$\mathrm{H}_{2} \mathrm{BN}$	61.1		
BNH_{2}	132.2	BNH_{2}	73.3	HBN	98.1		
HBN	121.0						
BNH	152.0	BNH	122.3	BH_{3}	105.3		
BN	107.7			$\mathrm{BH}_{2} \mathrm{Cl}$	104.6		124.8
				BHCl_{2}	105.1	BHCl_{2}	121.8
						BCl_{3}	118.1
				BH_{2}	78.9		
				HBCl	63.6	HBCl	99.2
				BH	84.7	BCl_{2}	80.2
$\mathrm{Cl}_{3} \mathrm{~B}: \mathrm{NH}_{3}$	25.3					BCl	120.3
$\mathrm{H}_{3} \mathrm{~N}: \mathrm{BCl}_{2} \mathrm{NH}_{2}$	8.8						
HClBNH_{2}	141.3			HClBNH_{2}	107.0	HClBNH_{2}	123.2
$\mathrm{Cl}_{2} \mathrm{BNH}_{2}$	137.8	$\mathrm{Cl}_{2} \mathrm{BNH}_{2}$	125.6			$\mathrm{Cl}_{2} \mathrm{BNH}_{2}$	120.2
$\mathrm{ClB}\left(\mathrm{NH}_{2}\right)_{2}$	129.3						
$\mathrm{Cl}_{2} \mathrm{BNH}$	105.2	$\mathrm{Cl}_{2} \mathrm{BNH}$	101.3			$\mathrm{Cl}_{2} \mathrm{BNH}$	35.8
ClBNH_{2}	97.8	ClBNH_{2}	41.2			ClBNH_{2}	85.9
ClBNH	149.7	ClBNH	130.7			CIBNH	118.0
$\mathrm{Cl}_{2} \mathrm{BN}$	81.9					$\mathrm{Cl}_{2} \mathrm{BN}$	65.1
ClBN	97.0					ClBN	109.6

is only $26 \mathrm{kcal} \mathrm{mol}^{-1}$, which is considerably lower than the barrier predicted for ethylene ($45 \mathrm{kcal} \mathrm{mol}^{-1}$). Substitution of chlorine for hydrogen at the boron atom significantly weakens
the $\mathrm{B}-\mathrm{N}$ bond; in ClBNH , the $\mathrm{B}-\mathrm{N}$ bond is $29 \mathrm{kcal} \mathrm{mol}^{-1}$ weaker than in HBNH , while in $\mathrm{Cl}_{2} \mathrm{BNH}_{2}$ it is $7 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ weaker than in $\mathrm{H}_{2} \mathrm{BNH}_{2}$. This is consistent with both the higher
electronegativity of this atom relative to hydrogen and the ability of chlorine to form π bonds of its own with boron.

Boron compounds can also form donor-acceptor complexes with Lewis acids such as NH_{3} and three such compounds, $\mathrm{H}_{3} \mathrm{~B}$: $\mathrm{NH}_{3}, \mathrm{Cl}_{3} \mathrm{~B}: \mathrm{NH}_{3}$, and $\mathrm{H}_{3} \mathrm{~N}: \mathrm{BCl}_{2} \mathrm{NH}_{2}$, are included here. As expected for complexes of this type, ${ }^{3}$ the $\mathrm{B}-\mathrm{N}$ bonds in these three compounds are predicted to be rather weak: 31.3, 25.3, and $8.8 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ for $\mathrm{H}_{3} \mathrm{~B}: \mathrm{NH}_{3}, \mathrm{Cl}_{3} \mathrm{~B}: \mathrm{NH}_{3}$, and $\mathrm{H}_{3} \mathrm{~N}: \mathrm{BCl}_{2}-$ NH_{2}, respectively. This weakness is reflected in the $\mathrm{B}-\mathrm{N}$ bond length, which is significantly longer than in the closed shell or unsaturated compounds. In the series $\mathrm{H}_{3} \mathrm{~B}: \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{BNH}_{2}$, HBNH , the $\mathrm{B}-\mathrm{N}$ bond lengths are $1.689,1.389$, and $1.223 \AA$, respectively. We also note that the $\mathrm{B}-\mathrm{N}$ distance predicted for $\mathrm{Cl}_{3} \mathrm{~B}: \mathrm{NH}_{3}$ is $1.628 \AA$, which is shorter than the same bond in $\mathrm{H}_{3} \mathrm{~B}: \mathrm{NH}_{3}$, even though the bond in $\mathrm{Cl}_{3} \mathrm{~B}: \mathrm{NH}_{3}$ is predicted to be almost $6 \mathrm{kcal} \mathrm{mol}^{-1}$ weaker. Previously reported calculations at the MP2/TZ2P level ${ }^{1}$ yield similar results. Substitution of an NH_{2} group for a chlorine atom in $\mathrm{H}_{3} \mathrm{~N}: \mathrm{BCl}_{3}$ yields the complex $\mathrm{H}_{3} \mathrm{~N}: \mathrm{BCl}_{2} \mathrm{NH}_{2}$, whose $\mathrm{B}-\mathrm{N}$ bond is much weaker (8.3 $\mathrm{kcal} \mathrm{mol}{ }^{-1}$) than that of $\mathrm{H}_{3} \mathrm{~N}: \mathrm{BCl}_{3}$. Evidently, $\mathrm{BCl}_{2} \mathrm{NH}_{2}$ is a much weaker Lewis acid than BCl_{3}, leading us to predict that the $\mathrm{B}-\mathrm{N}$ bonds in complexes with even more highly aminesubstituted boron compounds $\left(\mathrm{BCl}\left(\mathrm{NH}_{2}\right)_{2}\right.$ or $\left.\mathrm{B}\left(\mathrm{NH}_{2}\right)_{3}\right)$ are probably too weak to exist at room temperature.

It is also interesting to note that the predicted $\mathrm{B}-\mathrm{N}$ BDE in $\mathrm{H}_{3} \mathrm{~B}: \mathrm{NH}_{3}$ is $6 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ larger than in $\mathrm{Cl}_{3} \mathrm{~B}: \mathrm{NH}_{3}$. This appears to contradict the suggestion by Brinck et al. that complexation energies (which are the negative of the $\mathrm{B}-\mathrm{N}$ bond energy) in $\mathrm{X}_{3} \mathrm{~B}: \mathrm{NH}_{3}$ species should increase with increasing ability to accept charge. ${ }^{36}$ In the case of the halogens, they predict this order to be $\mathrm{BF}_{3}<\mathrm{BCl}_{3}<\mathrm{BBr}_{3}$, which is consistent with the observed Lewis acidities of these molecules. Based on this argument, one would expect a weaker $\mathrm{B}-\mathrm{N}$ bond in $\mathrm{H}_{3} \mathrm{~B}: \mathrm{NH}_{3}$ than in $\mathrm{Cl}_{3} \mathrm{~B}: \mathrm{NH}_{3}$. However, a detailed theoretical analysis of the bonding in complexes of this type by Jonas et al. indicates that the $\mathrm{B}-\mathrm{N}$ bond strength includes contributions from both covalent and electrostatic interactions, ${ }^{1}$ making trends in bond energies very difficult to predict a priori.

Bonds between nitrogen and hydrogen are strengthened by bonding to boron-containing groups, making the $\mathrm{N}-\mathrm{H}$ bonds in $\mathrm{H}_{2} \mathrm{BNH}_{2}\left(119.8 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ and HBNH ($135 \mathrm{kcal} \mathrm{mol}^{-1}$) stronger than either their hydrocarbon analogues, $\mathrm{C}_{2} \mathrm{H}_{4}(110.8$ kcal mol^{-1}) and $\mathrm{C}_{2} \mathrm{H}_{2}\left(132 \mathrm{kcal} \mathrm{mol}{ }^{-1}\right)$, or $\mathrm{NH}_{3}(109.1 \mathrm{kcal}$ mol^{-1}). The $\mathrm{N}-\mathrm{H}$ bond is further strengthened in $\mathrm{X}_{2} \mathrm{BNH}_{2}$ species by increasing the electronegativity of the boroncontaining moiety; for example, the $\mathrm{N}-\mathrm{H} \operatorname{BDE}$ in $\mathrm{Cl}_{2} \mathrm{BNH}_{2}$ is $125.6 \mathrm{kcal} \mathrm{mol}^{-1}$. This is consistent with trends predicted for other amines; for example, the $\mathrm{N}-\mathrm{H}$ BDEs in the series NH_{3}, $\mathrm{H}_{2} \mathrm{NSiH}_{3}, \mathrm{H}_{2} \mathrm{NSiF}_{3}{ }^{49}$ are 109,115 , and $120 \mathrm{kcal} \mathrm{mol}{ }^{-1}$.
B. Comparison of Calculated Heats of Formation with Literature Values. A substantial body of literature exists concerning the thermochemistry of boron-containing species, consisting of both experimental and theoretical investigations. Experimental measurements leading to heats of formation are available for compounds containing $\mathrm{B}-\mathrm{H}, \mathrm{B}-\mathrm{Cl}$, and $\mathrm{B}-\mathrm{N}$ bonds, allowing a direct comparison between theory and experiment. Unfortunately, in very few cases can the values recommended in compilations of thermodynamic data be considered well established. The most recent critical review, published by Gurvich et al., ${ }^{20}$ recommends heats of formation and other thermodynamic data based on a thorough evaluation of the available experimental data, combined with updated spectroscopic constants. This compilation includes 12 of the compounds in this study. In cases where the experimental data are insufficient to provide reliable values for heats of formation,

Gurvich et al. make use of atomization energies predicted by $a b$ initio calculations coupled with measured spectroscopic data to determine a heat of formation. The JANAF Tables ${ }^{19}$ also include data for a number of boron-containing compounds; however, some of these tables have not been revised since the mid-1960s. A corresponding review of the theoretical work has not been published, so these results are summarized in Table 4 along with the values recommended by JANAF and Gurvich et al. Heats of formation obtained by individual experimental investigations are not listed, except where they are not included in the review of Gurvich et al. Atomization energies referred to in the discussion below are given in Table 3.

Heats of formation for the boron hydrides $\left(\mathrm{BH}_{n},(n=1-3)\right.$ have not been firmly established. There is wide scatter in the experimental values reported for BH_{3}, and the uncertainty quoted by both the JANAF Tables ${ }^{19}$ and Gurvich et al. ${ }^{20}$ is relatively high ($\pm 2.4 \mathrm{kcal} \mathrm{mol}{ }^{-1}$). As noted by Gurvich et al., the experimental data for BH_{3} are contradictory, with results from kinetic investigations in the range $18-23 \mathrm{kcal} \mathrm{mol}^{-1}$, while predictions based on electron impact and photoionization studies range from 14 to $35 \mathrm{kcal} \mathrm{mol}^{-1}$. The BAC-MP4 value (22.4 $\pm 1.0 \mathrm{kcal} \mathrm{mol}^{-1}$) is based on a G-2 calculation and thus does not constitute a new prediction. However, it is consistent with the value recommend by Gurvich et al. ($21 \pm 2.4 \mathrm{kcal} \mathrm{mol}^{-1}$) and thus supports the values measured by the kinetic studies. Recent ab initio calculations of the BH_{3} atomization energy, typically performed at the MP4 level of theory or above, are generally in good agreement with each other, with values varying by only $\pm 1 \mathrm{kcal} \mathrm{mol}^{-1}$. In addition, these values agree well with the experimental measurement of this quantity by Ruscic et al. $\left(265.3 \pm 1.7 \mathrm{kcal} \mathrm{mol}^{-1}\right) .{ }^{64}$

Reliable measurements of thermodynamic and spectroscopic constants for BH_{2} are unavailable. Gurvich et al. ${ }^{20}$ base their recommendation ($76.1 \pm 2.6 \mathrm{kcal} \mathrm{mol}^{-1}$) on an atomization energy predicted by Pople et al. at the MP4/6-31G(d) level. ${ }^{25}$ The heat of formation predicted by BAC-MP4 ($75.6 \pm 1.2 \mathrm{kcal}$ mol^{-1}) is consistent with this recommendation, as well as with the results of calculations at various levels of theory. The $J A N A F$ value $\left(48 \pm 15 \mathrm{kcal} \mathrm{mol}^{-1}\right)^{19}$ is based on appearancepotential measurements that have been shown to be spurious. ${ }^{64}$ As noted above, differences in heats of formation predicted by various investigators are in part due to the different values of the boron atom heat of formation used to convert predicted atomization energies into heats of formation. However, the atomization energy for BH_{2} predicted by the BAC-MP4 method is in good agreement with other calculated values, which vary by only $\pm 1.1 \mathrm{kcal} \mathrm{mol}^{-1}$.

The BH heats of formation recommended by Gurvich et al. ${ }^{20}$ and the JANAF Tables ${ }^{19}$ are based on experimental estimates of the molecular dissociation energy ($D_{0}(\mathrm{BH})$), which were determined from the observation of molecular predissociation in the $\mathrm{A}^{1} \Pi$ excited state. Unfortunately, these data yield only an upper limit for $D_{0}(\mathrm{BH})\left(\leq 82.5 \mathrm{kcal} \mathrm{mol}^{-1}\right)$, since there is a barrier to dissociation in the $\mathrm{A}^{1} \Pi$ state. ${ }^{65}$ The magnitude of this barrier has not been measured, although there are several predictions from theory, most of which range from 1.8 to 3.7 kcal mol ${ }^{-1} .{ }^{20}$ However, a CCD+ST(CCD) calculation reported by Martin et al. suggests that the barrier is quite small (~ 0.2 $\left.\mathrm{kcal} \mathrm{mol}{ }^{-1}\right)$, resulting in a predicted $D_{0}(\mathrm{BH})$ of $82.4 \pm 0.2 \mathrm{kcal}$ $\mathrm{mol}^{-1} .{ }^{29}$ The value assumed by Gurvich et al. ($3.0 \mathrm{kcal} \mathrm{mol}{ }^{-1}$) yields $D_{0}(\mathrm{BH})$ of $79.6 \pm 1.2 \mathrm{kcal} \mathrm{mol}{ }^{-1} .{ }^{20}$ In contrast, the values of $D_{0}(\mathrm{BH})$ predicted by G-2 ${ }^{31}\left(82.8 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ and BAC-MP4 ($83.7 \mathrm{kcal} \mathrm{mol}^{-1}$) both exceed the experimental upper limit. In the case of the BAC-MP4 prediction, we believe that the inconsistency is caused by the inability of the theoretical
method to completely correct for electron correlation effects (i.e., the UHF instability) associated with the empty p orbitals on the boron atom. For this reason, we consider the heat of formation recommended by Gurvich et al. ($106.6 \pm 1.7 \mathrm{kcal}$ mol^{-1}) to be more reliable than the BAC-MP4 prediction (102.4 $\pm 1.6 \mathrm{kcal} \mathrm{mol}^{-1}$).

The boron chlorides provide the only example of a wellestablished heat of formation for a boron-containing compound: boron trichloride. The results of nine experimental studies of BCl_{3} (summarized by Gurvich et al. ${ }^{20}$) employing a range of methods are largely in agreement and lead to a recommended heat of formation ${ }^{20}$ of $-96.68 \pm 0.31 \mathrm{kcal} \mathrm{mol}^{-1}$. We use this value as a reference to establish the $\mathrm{B}-\mathrm{Cl}$ BAC (see discussion above). This assumption yields predicted heats of formation for two other closed shell boron chlorides that agree well with recommended values: ${ }^{20} \mathrm{BHCl}_{2}(-60.6 \pm 1.0 \mathrm{kcal}$ mol^{-1} predicted, $-60.2 \pm 1.2 \mathrm{kcal} \mathrm{mol}^{-1}$ recommended ${ }^{20}$) and $\mathrm{BH}_{2} \mathrm{Cl}\left(-20.3 \pm 1.0 \mathrm{kcal} \mathrm{mol}^{-1}\right.$ predicted, $-19.3 \pm 4.8 \mathrm{kcal}$ mol^{-1} recommended ${ }^{20}$). The BAC-MP4 heats of formation are derived from the predicted heats of atomization 316.0, 302.5, and $284.9 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\mathrm{BCl}_{3}, \mathrm{BHCl}_{2}$, and $\mathrm{BH}_{2} \mathrm{Cl}$, respectively; the latter two values are in excellent agreement with those used by Gurvich et al. ${ }^{20}$ In contrast, G-2 predicts significantly higher values: $320.1,304.9$, and $286.1 \mathrm{kcal} \mathrm{mol}{ }^{-1},{ }^{31}$ two of which (for BCl_{3} and BHCl_{2}) are outside the uncertainty limits quoted by Gurvich et al. The source of this difference between the two methods is unclear at this time.

Experimental data for the open shell boron chlorides BCl_{2} and HBCl are more limited. The heat of formation for BCl_{2} recommended by Gurvich et al. ${ }^{20}\left(-14.6 \pm 2.4 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ is based on an atomization energy of $205.8 \pm 2.9 \mathrm{kcal} \mathrm{mol}^{-1}$, which disagrees significantly with predictions of both BACMP4 (198.7 kcal mol ${ }^{-1}$) and G-2 ${ }^{31}$ ($200.3 \mathrm{kcal} \mathrm{mol}^{-1}$). The JANAF Tables ${ }^{19}$ recommend a different value ($-19.0 \pm 3.0 \mathrm{kcal}$ mol^{-1}), derived from another experimental study. Thus, a serious disagreement exists among the heats of formation predicted by BAC-MP4 $\left(-7.5 \pm 1.1 \mathrm{kcal} \mathrm{mol}^{-1}\right)$, G-2 (-6.8 $\mathrm{kcal} \mathrm{mol}{ }^{-1}$), and those based on experiment. In contrast, the atomization energies for HBCl predicted by BAC-MP4 (181.8 $\mathrm{kcal} \mathrm{mol}{ }^{-1}$) and G-2 (181.9 $\mathrm{kcal} \mathrm{mol}^{-1}$) are in good agreement with the value used by Gurvich et al. ($182.8 \pm 4.8 \mathrm{kcal} \mathrm{mol}^{-1}$), leading to consistency among the resulting heats of formation (Table 4). However, this agreement may be fortuitous, since $\Sigma D_{0}(\mathrm{HBCl})$ used by Gurvich et al. is not based on experimental data, but was estimated by assuming that the average bond energies in $\mathrm{BHCl}, \mathrm{BH}_{2}$, and BCl_{2} are the same.

The relatively large uncertainties associated with experimental measurements of $D_{0}(\mathrm{BCl})$ make it difficult to establish the accuracy of the BAC-MP4 heats of formation for $\mathrm{BCl} . D_{0}(\mathrm{BCl})$ predicted by BAC-MP4 ($119.4 \mathrm{kcal} \mathrm{mol}^{-1}$) is $3.6 \mathrm{kcal} \mathrm{mol}^{-1}$ smaller than the G-2 prediction ${ }^{31}$ ($123.0 \mathrm{kcal} \mathrm{mol}^{-1}$). Although the latter value agrees somewhat better with the one used by Gurvich et al. ${ }^{20}\left(121.9 \pm 4.8 \mathrm{kcal} \mathrm{mol}^{-1}\right.$, based on massspectrometric measurements), the wide range of experimental values ($\left.100-139 \mathrm{kcal} \mathrm{mol}^{-1}\right)^{20}$ and the relatively high uncertainty quoted by Gurvich et al. make it unclear which of the predicted values is the more accurate. The BCl heat of formation predicted by BAC-MP4 (43.7 kcal mol ${ }^{-1}$) does, however, agree with the recommended value ${ }^{20}(41.2 \pm 6.0 \mathrm{kcal}$ mol^{-1}) within the quoted uncertainty. As is the case for BCl_{2}, the JANAF Tables, ${ }^{19}$ using a different value of $D_{0}(\mathrm{BCl})$ than the one employed by Gurvich et al., recommend a substantially lower heat of formation. However, since the analysis of Gurvich et al. accounts for the presence of low-lying excited electronic
states, while the JANAF analysis does not, we expect that the number recommended by Gurvich et al. is more accurate.

Heats of formation derived from experimental data for species containing $\mathrm{B}-\mathrm{N}$ bonds are only available for $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$ (borazole), $\mathrm{H}_{3} \mathrm{~B}: \mathrm{NH}_{3}$, and BN (Table 4). As discussed above, the $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$ heat of formation is used in this investigation as a reference compound to establish the BAC for $\mathrm{B}-\mathrm{N}$ bonds and consequently cannot be used to test the accuracy of the BAC-MP4 predictions. However, the Lewis acid-base complex $\mathrm{H}_{3} \mathrm{~B}: \mathrm{NH}_{3}$ has been studied extensively by theoretical methods, ${ }^{2}$ yielding several predictions of the $\mathrm{B}-\mathrm{N}$ bond energy. In addition, four experimental studies (reviewed by Gurvich et al. ${ }^{20}$) provide a heat of formation for comparison with BAC-MP4 results. Gurvich et al. recommend a heat of formation for $\mathrm{H}_{3} \mathrm{~B}: \mathrm{NH}_{3}$ of $-27.5 \pm 3.6 \mathrm{kcal} \mathrm{mol}^{-1}$, which is somewhat more negative than the BAC-MP4 prediction of $-20.0 \pm 2.0 \mathrm{kcal} \mathrm{mol}^{-1}$. The BAC-MP4 prediction of $31.3 \mathrm{kcal} \mathrm{mol}^{-1}$ for the $\mathrm{B}-\mathrm{N}$ bond energy is in reasonable agreement with other predictions: 34.7 $\mathrm{kcal} \mathrm{mol}{ }^{-1}$ (MP4(SDTQ)/6-311G**), ${ }^{38} 30.7 \mathrm{kcal} \mathrm{mol}^{-1}$ (MP2/ TZ2P), ${ }^{1} 27.6 \mathrm{kcal} \mathrm{mol}^{-1}$ (CEPA-2), ${ }^{66} 27 \mathrm{kcal} \mathrm{mol}^{-1}$ (CEPA), ${ }^{37}$ and $21 \mathrm{kcal} \mathrm{mol}^{-1}\left(6-31 \mathrm{G}^{*}\right) .^{40}$ Haaland also estimated the $\mathrm{B}-\mathrm{N}$ BDE ($31.1 \mathrm{kcal} \mathrm{mol}^{-1}$) by making comparisons with related methylated aminoboranes. ${ }^{3}$ The heats of formation recommend by Gurvich et al. yield a $\mathrm{B}-\mathrm{N}$ bond energy of $37.5 \mathrm{kcal} \mathrm{mol}^{-1}$, which is significantly higher than any of the predicted values, as well as Haaland's estimate. Bearing in mind that the $\mathrm{B}-\mathrm{N}$ reference heat of formation is based on a single experimental study and is thus not firmly established, these comparisons suggest that the heat of formation determined by Gurvich et al. is too negative by $3-7 \mathrm{kcal} \mathrm{mol}^{-1}$.

The only thermodynamic information in the literature for the complex $\mathrm{Cl}_{3} \mathrm{~B}: \mathrm{NH}_{3}$ is a calculation of its complexation energy carried out by Brinck et al. at the MP2/6-31+G(2d,p) level of theory. ${ }^{36}$ The $\mathrm{B}-\mathrm{N}$ bond energy obtained by these authors is $24.08 \mathrm{kcal} \mathrm{mol}^{-1}$ (at 0 K), in excellent agreement with the BACMP4 prediction of $24.27 \mathrm{kcal} \mathrm{mol}^{-1}$. Jonas et al. also predicted the $\mathrm{B}-\mathrm{N}$ energy for this compound at a similar level of theory (MP2/TZ2P), but predicted a somewhat larger bond energy (29.7 kcal mol ${ }^{-1}$ at 298 K$) .{ }^{1}$ Unfortunately, there are no experimental data for comparison.

Uncertainties in the recommended heats of formation for BN are high; the JANAF Tables quote a value of $114 \pm 30 \mathrm{kcal}$ mol^{-1}, while Gurvich et al. recommend $135 \pm 14 \mathrm{kcal} \mathrm{mol}^{-1}$. Neither value is based on a direct measurement of $D_{0}(\mathrm{BN})$. The uncertainties in these values encompass the BAC-MP4 prediction of $140.3 \pm 37 \mathrm{kcal} \mathrm{mol}^{-1}$, which itself has a large uncertainty due to the poor convergence behavior of the MP perturbation series (Table 3). Reddy et al. obtained a value for $D_{0}(\mathrm{BN})$ of $77.5 \mathrm{kcal} \mathrm{mol}^{-1}$ by fitting an empirical potential function; ${ }^{32}$ the corresponding value predicted by BAC-MP4 is $108 \pm 38 \mathrm{kcal} \mathrm{mol}^{-1}$. Clearly, additional experimental and theoretical work is necessary to achieve a useful understanding of the energetics of this molecule.
C. Gas-Phase Reactions Relevant to the CVD of Boron Nitride. As discussed in the Introduction, reactions between boron halides and ammonia are used in CVD processes to deposit films or coatings of boron nitride. In particular, boron trichloride and ammonia are commonly used as reactants. The potential for gas-phase reactions between these species is thus of some practical interest, not only for the purpose of developing quantitative process models but for avoiding reactor conditions that may lead to homogeneous nucleation of particulates. We calculated the transition-state energetics for two reactions that are likely to be important under typical CVD conditions. (The calculated heats of formation discussed in section A may also

Figure 1. Transition state for the reaction $\mathrm{BCl}_{3}+\mathrm{NH}_{3} \rightarrow \mathrm{Cl}_{2} \mathrm{BNH}_{2}$ +HCl . Bond distances are given in Table 2.
be used to calculate enthalpies for other potentially important reactions not discussed here, since numerous species that may be present at high temperatures are included.) Before proceeding we note that predictions of transition-state energies are very dependent upon the molecular geometry used; since the BACMP4 method uses a relatively low level of theory (HF) to predict these geometries, the energies discussed below should be interpreted with some caution. Previous investigations using the BAC-MP4 method indicate that activation energies may be overpredicted by several $\mathrm{kcal} \mathrm{mol}^{-1}$ in some cases. ${ }^{48}$ However, BAC-MP4 predictions are still sufficiently accurate to provide a basis for evaluating the relative importance of various gasphase pathways, particularly for reaction systems such as $\mathrm{BCl}_{3} /$ NH_{3} that are very poorly characterized. We also note that the good convergence behavior of the calculated transition-state energies (Table 3) and consequently small error estimates (Table 4) suggest that large changes in these energies are not likely to result further refinement of the geometry.

At room temperature, BCl_{3} and NH_{3} form a stable gas-phase complex:

$$
\begin{equation*}
\mathrm{BCl}_{3}+\mathrm{NH}_{3} \leftrightarrow \mathrm{Cl}_{3} \mathrm{~B}: \mathrm{NH}_{3} \tag{1}
\end{equation*}
$$

This reaction is predicted to be exothermic by $25 \mathrm{kcal} \mathrm{mol}^{-1}$. At the temperatures employed in CVD reactors (1000-2000 K), a second reaction can occur in which HCl is eliminated from a transition state formed by the collision of the two reactants:

$$
\begin{equation*}
\mathrm{BCl}_{3}+\mathrm{NH}_{3} \leftrightarrow\left[\mathrm{Cl}_{3} \mathrm{BNH}_{3}\right]^{\dagger} \leftrightarrow \mathrm{Cl}_{2} \mathrm{BNH}_{2}+\mathrm{HCl} \tag{2}
\end{equation*}
$$

The barrier for this reaction, as determined from the calculated heats of formation (Table 4) for BCl_{3} and the transition state $\left[\mathrm{Cl}_{3} \mathrm{BNH}_{3}\right]^{\dagger}$, is a relatively modest $13 \mathrm{kcal} \mathrm{mol}^{-1}$. The overall reaction is predicted to be exothermic by about $14 \mathrm{kcal} \mathrm{mol}^{-1}$. The transition state for reaction 2 is shown in Figure 1 and can be described crudely as a four-center elimination pathway. However, the inequality of the $\mathrm{N}-\mathrm{H}$ and $\mathrm{B}-\mathrm{Cl}$ bond lengths (1.083 vs $2.958 \AA$, respectively) suggests that the reaction is more accurately described either by a sequential loss of a chlorine atom followed by hydrogen-atom abstraction, or by formation of a charge-stabilized adduct in which the chlorine atom is negatively charged and the hydrogen atom positively charged. The latter mechanism appears to be more likely, since the activation energy for reaction 2 is so much smaller than the $\mathrm{B}-\mathrm{Cl} \mathrm{BDE}\left(120 \mathrm{kcal} \mathrm{mol}^{-1}\right)$. This is also supported by the absence of UHF instability in the transition state (Table 2), which indicates a lack of biradical (multireference state) character. The sequential nature of the process is supported by the fact that the $\mathrm{B}-\mathrm{Cl}$ bond in the transition state is nearly twice as long as in $\mathrm{BCl}_{3}(2.958$ vs $1.511 \AA)$, while the $\mathrm{N}-\mathrm{H}$ bond is

Figure 2. Transition state for the reaction $\mathrm{Cl}_{2} \mathrm{BNH}_{2} \rightarrow \mathrm{ClBNH}+\mathrm{HCl}$. Bond distances are given in Table 2.
only slightly elongated from its length in $\mathrm{NH}_{3}(1.083$ vs 1.003 A). Both products of reaction 2 have been detected at temperatures similar to those used in CVD reactors, ${ }^{16,17}$ indicating that this reaction probably occurs under CVD conditions. However, kinetic measurements suggest that the actual barrier is smaller than is predicted here; in experiments by Kapralova et al., ${ }^{16}$ a rate near the collision limit was measured at 343 K , while a limited flow-reactor study indicates that the rate may be 500-1000 times faster than that based on the BAC-MP4 prediction at $725 \mathrm{~K} .{ }^{17}$ If the flow-reactor data are accurate, and all of the error in the BAC-MP4 prediction is contained in the activation energy, then the BAC-MP4 prediction is $8-10$ $\mathrm{kcal} \mathrm{mol}{ }^{-1}$ too high. An error of this size is somewhat larger than we expect on the basis of application of the BAC-MP4 method to other first-row systems. ${ }^{48}$ Thus, additional experiments are required to fully resolve this question.

The calculations also predict that $\mathrm{Cl}_{2} \mathrm{BNH}_{2}$ can lose HCl via a 1,2-elimination process:

$$
\begin{equation*}
\mathrm{Cl}_{2} \mathrm{BNH}_{2} \leftrightarrow \mathrm{ClBNH}+\mathrm{HCl} \tag{3}
\end{equation*}
$$

The transition state for this reaction (Figure 2) is very similar to that for reaction 2, i.e., a distorted, four-center complex in which the $\mathrm{B}-\mathrm{Cl}$ bond is stretched to nearly twice its equilibrium value ($1.773 \AA$), while the $\mathrm{N}-\mathrm{H}$ bond is extended by only about 13% from its equilibrium value. In this case, however, the reaction is endothermic by $58 \mathrm{kcal} \mathrm{mol}^{-1}$ and a substantial activation barrier of $78 \mathrm{kcal} \mathrm{mol}^{-1}$ must be surmounted in order for reaction to occur. It seems likely that reaction 3 will not be very important except at high temperatures, since the preexponential factor for this reaction will be relatively small due to the tight transition state, and falloff effects at the low pressures used in CVD processing (2-60 Torr) will further reduce the rate.

Two other possible reaction pathways involve the continued amination of the boron halide via processes analogous to reaction 2. Since BN CVD normally occurs in an excess of ammonia, the possibility exists for NH_{3} to react further with the initially formed $\mathrm{Cl}_{2} \mathrm{BNH}_{2}$ product:

$$
\begin{align*}
& \mathrm{Cl}_{2} \mathrm{BNH}_{2}+\mathrm{NH}_{3} \leftrightarrow \mathrm{ClB}\left(\mathrm{NH}_{2}\right)_{2}+\mathrm{HCl} \tag{4}\\
& \mathrm{ClB}\left(\mathrm{NH}_{2}\right)_{2}+\mathrm{NH}_{3} \leftrightarrow \mathrm{~B}\left(\mathrm{NH}_{2}\right)_{3}+\mathrm{HCl} \tag{5}
\end{align*}
$$

Reaction 4 is slightly exothermic $\left(\Delta H^{\circ}{ }_{\mathrm{R} 4}(298 \mathrm{~K})=-3.1 \mathrm{kcal}\right.$ $\left.\mathrm{mol}^{-1}\right)$, while reaction 5 is endothermic $\left(\Delta H^{\circ}{ }_{\mathrm{R} 5}(298 \mathrm{~K})=5.6\right.$ $\mathrm{kcal} \mathrm{mol}^{-1}$). We did not determine the energies of the transition states for these two reactions as part of this study. However, on the current understanding of the factors affecting Lewis acidbase reactions, it is reasonable to conclude that the activation barriers for both reactions will be higher than for reaction 2 . In a theoretical study of the factors affecting the bonding in
complexes of BCl_{3} and BF_{3} with NH_{3}, Brinck et al. ${ }^{36}$ concluded that the $\mathrm{B}-\mathrm{N}$ bond energies of $\mathrm{X}_{3} \mathrm{~B}: \mathrm{NH}_{3}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}$, or Br$)$ complexes are strongly affected by the electron affinity and ability to accept charge of the BX_{3} moiety. Thus, although the trend in the halogen electronegativities is $\mathrm{F}>\mathrm{Cl}>\mathrm{Br}$, the trends in electron affinity and charge capacity are the opposite, leading to $\mathrm{B}-\mathrm{N}$ bond energies that increase in the order $\mathrm{F}_{3} \mathrm{~B}$: $\mathrm{NH}_{3}<\mathrm{Cl}_{3} \mathrm{~B}: \mathrm{NH}_{3}<\mathrm{Br}_{3} \mathrm{~B}: \mathrm{NH}_{3}$. If the transition states of reactions 2,4 , and 5 can be assumed to form by attack of the filled $\mathrm{NH}_{3}-2$ p orbital on the unfilled boron $2 p$ orbital, creating a donor-acceptor complex (e.g., for reaction $4,\left[\mathrm{Cl}_{2}\left(\mathrm{NH}_{2}\right) \mathrm{B}\right.$: $\left.\mathrm{NH}_{3}\right]^{\dagger}$) that rearranges to yield the four-center transition state, then one would predict that the activation energy would increase as the Lewis acidity of the boron-containing reactant decreased. Substitution of an NH_{2} group for Cl should reduce the Lewis acidity based on the arguments of Brinck et al., since the electron affinity of nitrogen is considerably lower than that of chlorine, ${ }^{67}$ and we expect the charge capacity of NH_{2} also to be less than that of Cl . There are no direct experimental data to confirm this speculation at the present time, although neither $\mathrm{ClB}\left(\mathrm{NH}_{2}\right)_{2}$ nor $\mathrm{B}\left(\mathrm{NH}_{2}\right)_{3}$ was detected in flow-reactor measurements at temperatures up to $963 \mathrm{~K}^{17}$ or in analysis of the gases produced by a BN CVD reactor, ${ }^{12}$ suggesting that reactions 4 and 5 are indeed slower than reaction 2.

Reactions 3-5 are an illustration of the general phenomenon that electron-deficient elements such as boron can undergo addition-elimination reaction cycles by taking advantage of empty orbitals (p-type, in the case of boron) to stabilize an adduct and then eliminate a stable (i.e., nonradical) product. This provides a low-energy pathway for ligand substitution and allows strongly bound ligands such as chlorine to be exchanged without the energy necessary to break a bond unimolecularly. In contrast, such one-step ligand substitution reactions cannot occur in closed shell compounds of carbon or silicon, but must involve high-energy pathways in which a radical is formed first.

IV. Summary and Conclusions

We have used $a b$ initio calculations coupled with empirical bond-additivity corrections to arrive at a set of thermodynamic data for species in the $\mathrm{B}-\mathrm{N}-\mathrm{Cl}-\mathrm{H}$ system. Predicted heats of formation for compounds in the $\mathrm{B}-\mathrm{H}-\mathrm{Cl}$ series are generally in good agreement with the most recent critical review of the available experimental data, ${ }^{20}$ although there is a discrepancy between the predicted and experimental values for BCl_{2} that will ultimately have to be resolved by further experiments. Since experimental data for compounds containing $\mathrm{B}-\mathrm{N}$ bonds are so sparse and generally have high uncertainties, we cannot determine the accuracy of the BAC-MP4 method for predicting thermodynamic properties for these compounds at this time. However, for $\left(\mathrm{H}_{3} \mathrm{~B}: \mathrm{NH}_{3}\right)$, for which there are both experimental data as well as other theoretical predictions, the BAC-MP4 results are in good agreement with both. Thus, we expect that the self-consistent set of thermochemical data provided by these calculations will lead to valuable insights into the hightemperature reactions occuring in CVD processes involving boron. In particular, rate constants derived from the predicted transition-state energies for reactions between BCl_{3} and NH_{3} represent the first quantitative estimates of these rates. ${ }^{17}$ Experiments currently underway in our laboratories will provide additional experimental evidence that can be used to test the validity of these predictions.

Acknowledgment. This work was supported by the U.S. Dept. of Energy under contract No. DE-AC04-94AL85000 for the Office of Basic Energy Sciences (C.F.M.) and by the U.S.

Dept. of Energy Office of Industrial Technologies Advanced Industrial Materials Program (M.D.A).

Appendix

Data contained in the Supporting Information are as follows: Table 7 presents atomic coordinates for each of the molecular species obtained from the HF/6-31G* geometry optimization calculations. Table 8 gives moments of inertia in atomic units (amu bohr${ }^{2}$), while Table 9 lists scaled vibrational frequencies obtained at the same level of theory. Table 10 presents electronic energies resulting from various perturbationtheory calculations using the $6-31 \mathrm{G}^{* *}$ basis set. The projected UHF (PUHF) and projected UMP2 (PUMP2) energies are given for reference, although they are not used in the derivation of the BACs.

Table 11 gives polynomial coefficients for C_{p}, H, and S as a function of temperature for the species considered in this paper. These fits can be used with the CHEMKIN software package ${ }^{68}$ and are defined by

$$
\begin{gathered}
C_{p} / R=a_{1}+a_{2} T+a_{3} T^{2}+a_{4} T^{3}+a_{5} T^{4} \\
\frac{H}{R T}=a_{1}+\frac{a_{2}}{2} T+\frac{a_{3}}{3} T^{2}+\frac{a_{4}}{4} T^{3}+\frac{a_{5}}{5} T^{4} \frac{a_{6}}{T} \\
\frac{S}{R}=a_{1} \ln T+a_{2} T+\frac{a_{3}}{2} T^{2}+\frac{a_{4}}{3} T^{3}+\frac{a_{5}}{4} T^{4}+a_{7}
\end{gathered}
$$

Supporting Information Available: Tables as described in the Appendix (18 pages). Ordering information is given on any current masthead page.

References and Notes

(1) Jonas, V.; Frenking, G.; Reetz, M. T. J. Am. Chem. Soc. 1994, 116, 8741.
(2) See ref 1 and references therein.
(3) Haaland, A. Angew. Chem., Int. Ed. Engl. 1989, 28, 992.
(4) Einset, E. O.; Patibandla, N.-B.; Luthra, K. L. J. Am. Ceram. Soc. 1994, 77, 3081.
(5) Karim, M. Z.; Camerson, D. C.; Hashmi, M. S. J. Mater. Des. 1991, 13, 207.
(6) Fareed, A. S.; Schiroky, G. H.; Kennedy, C. R. Ceram. Eng. Sci. Proc. 1993, 14, 794.
(7) Nakamura, K. Mater. Sci. Forum 1990, 54-55, 111.
(8) Hannache, H.; Naslain, R. J. Less-Comm. Met. 1983, 95, 221.
(9) Lee, W. Y.; Lackey, W. J.; Agrawal, P. K. J. Am. Ceram. Soc. 1991, 74, 2642.
(10) Matsuda, T.; Nakae, H.; Hirai, T. J. Mater. Sci. 1988, 23, 509.
(11) Patibandla, N.; Luthra, K. L. J. Electrochem. Soc. 1992, 12, 3558.
(12) Pavlovic, V.; Kötter, H.; Meixner, C. J. Mater. Res. 1991, 6, 2393.
(13) Tanji, H.; Monden, K.; Ide, M. In Tenth Int. Conf. CVD; The Electrochemical Society: Pennington, NJ, 1987; p 562.
(14) Arya, S. P. S.; D'Amico, A. Thin Solid Films 1988, 157, 267.
(15) Kwon, C. T.; McGee, H. A., Jr. Inorg. Chem. 1973, 12, 696.
(16) Kapralova, G. A.; Suchkova, T. V.; Chaikin, A. M. Mendeleev Commun. 1993, 3, 118.
(17) Allendorf, M. D.; Osterheld, T. H. In Thirteenth Int. Conf. CVD; The Electrochemical Society: (Pennington, NJ, 1996; p 16.
(18) Allendorf, M. D.; Melius, C. F.; Osterheld, T. H. In Covalent Ceramics III: Science and Technology of Non-Oxides; Materials Research Society: Pittsburgh, PA, 1995; p 459.
(19) Chase, M. W.; Davies, C. A.; Downey, J. R.; Frurip, D. J.; McDonald, R. A.; Szverud, A. N. J. Phys. Chem. Ref. Data 1985, 1985, 14.
(20) Gurvich, L. V.; Veyts, I. V.; Alcock, C. B. Thermodynamic Properties of Individual Substances; CRC Press: Boca Raton, 1994; Vol. 3.
(21) Ochterski, J. W.; Petersson, G. A.; Wiberg, K. B. J. Am. Chem. Soc. 1995, 117, 11299.
(22) Curtiss, L. A.; Pople, J. A. J. Chem. Phys. 1988, 89, 614.
(23) Page, M.; Adams, G. F.; Binkley, J. S.; Melius, C. F. J. Phys. Chem. 1987, 91, 2675.
(24) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221.
(25) Pople, J. A.; Luke, B. T.; Frisch, M. J.; Binkley, J. S. J. Phys. Chem. 1985, 89, 2198.
(26) Martin, J. M. L.; François, J. P.; Gijbels, R. Chem. Phys. Lett. 1989, 163, 387.
(27) Bauschlicher, C. W., Jr.; Langhoff, S. R.; Taylor, P. R. J. Chem. Phys. 1990, 93, 502.
(28) Curtiss, L. A.; Pople, J. A. J. Chem. Phys. 1989, 90, 2522.
(29) Martin, J. M. L.; François, J. P.; Gijbels, R. J. Chem. Phys. 1989, 91, 4425.
(30) See also references listed in Table 4.
(31) Schlegel, H. B.; Harris, S. J. J. Phys. Chem. 1994, $98,11178$.
(32) Reddy, R. R.; Reddy, A. S. R.; Rao, T. V. R. Physica 1985, 132C, 373.
(33) Martin, J. M. L.; El-Yazal, J.; Francois, J.; Gijbels, R. Chem. Phys. Lett. 1995, 232, 289.
(34) Sakai, S. J. Phys. Chem. 1995, 99, 5883.
(35) Sakai, S. J. Phys. Chem. 1995, 99, 9080.
(36) Brinck, T.; Murray, J. S.; Politzer, P. Inorg. Chem. 1993, 32, 2622.
(37) Ahlrichs, R.; Koch, W. Chem. Phys. Lett. 1978, 53, 341.
(38) Binkley, J. S.; Thorne, L. R. J. Chem. Phys. 1983, 79, 2932.
(39) Maouche, B.; Gayoso, J. Int. J. Quantum Chem. 1983, 23, 891.
(40) Dill, J. D.; Schleyer, P. v. R.; Pople, J. A. J. Am. Chem. Soc. 1975, 97, 3402.
(41) Allendorf, M. D.; Melius, C. F. J. Phys. Chem. 1992, 96, 428.
(42) Allendorf, M. D.; Melius, C. F. J. Phys. Chem. 1993, 97, 720.
(43) Allendorf, M. D.; Melius, C. F.; Ho, P.; Zachariah, M. R. J. Phys. Chem. 1995, 99, 15285.
(44) Ho, P.; Coltrin, M. E.; Binkley, J. S.; Melius, C. F. J. Phys. Chem. 1985, 89, 4647.
(45) Ho, P.; Coltrin, M. E.; Binkley, J. S.; Melius, C. F. J. Phys. Chem. 1986, 90, 3399.
(46) Ho, P.; Melius, C. F. J. Phys. Chem. 1990, 94, 5120-5127.
(47) Ho, P.; Melius, C. F. J. Phys. Chem. 1995, 99, 2166.
(48) Melius, C. F. In Chemistry and Physics of Energetic Materials; Bulusu, s. N., Ed.; Kluwer Academic Publishers: Dorderecht, 1990; Vol. 309; p 21.
(49) Melius, C. F.; Ho, P. J. Phys. Chem. 1991, 95, 1410-1419.
(50) Darling, C. L.; Schlegel, H. B. J. Phys. Chem. 1993, 97, 8207.
(51) Zachariah, M. R.; Tsang, W. J. Phys. Chem. 1995, 99, 5308.
(52) Note that, in the Supporting Information supplied in ref 47 and 43, the temperature ranges corresponding to the two sets of polynomial coefficients describing the temperature dependence of the thermodynamic properties are reversed. Thus, the first row of coefficients for a given species in Table 5S in ref 47 and Table 11 in ref 43 corresponds to the high temperature range, while the second row corresponds to the low-temperature range.
(53) Allendorf, M. D.; Melius, C. F.; Ho, P.; Zachariah, M. R. J. Phys. Chem. 1995, 99, 15285.
(54) Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. Gaussian 92, Revision B; Gaussian, Inc.: Pittsburgh, 1992.
(55) Roothan, C. C. J. Rev. Mod. Phys. 1951, 23, 69.
(56) Pople, J. A.; Newbet, R. K. J. Chem. Phys. 1954, 22, 571.
(57) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654.
(58) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.
(59) Storms, E.; Mueller, B. J. Phys. Chem. 1977, 81, 318.
(60) We discuss the limitations of the various experimental values of $\Delta H_{\mathrm{f}}{ }^{\circ}(\mathrm{B})$ in a recently submitted review article (M. W. Chase, D. Hildenbrand, M. D. Allendorf, submitted to J. Phys. Chem. Ref. Data).
(61) Nordine, P. C.; Weber, J. K. R.; Krishnan, S.; Schiffman, R. A. High Temp. Sci. 1991, 30, 163.
(62) Hildenbrand, D. L. Submitted to J. Chem. Phys.
(63) Muetterties, E. L. In The Chemistry of Boron and Its Compounds; Muetterties, E. L., Ed.; J. Wiley: New York, 1965; p 1.
(64) Ruscic, B.; Mayhew, C. A.; Berkowitz, J. J. Chem. Phys. 1988, 88, 5580.
(65) Herzberg, G.; Mundie, L. C. J. Chem. Phys. 1940, 8, 263.
(66) Zirz, C.; Ahlrichs, R. J. Chem. Phys. 1981, 75, 4980.
(67) Huheey, J. E. Inorganic Chemistry, 2 ed.; Harper and Row: New York, 1978.
(68) Kee, R. J.; Rupley, F. M.; Miller, J. A. The CHEMKIN Thermodynamic Data Base, Sandia National Laboratories Report SAND87-8215 Report 1987.

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, March 15, 1997.

[^1]: ${ }^{a}$ Reference compound. ${ }^{b}$ JANAF Tables (ref 19). ${ }^{c}$ G-2 calculation (ref 31). ${ }^{d}$ CID/6-31G*//CCD+ST(CCD/6-311+G(2df,p)B calculation (ref 26). ${ }^{e}$ AM1 calculation (Dewar, M. J. S.; et al. Organometallics 1988, 7, 513. ${ }^{f}$ MNDO calculation (ref 39). ${ }^{g}$ MNDO calculation (Dewar, M. J. S.; McKee, M. L. J. Am. Chem. Soc. 1977, 99, 5231. ${ }^{h}$ CATCH Tables (Guest, M. F.; Pedley, J. B.; Horn, M. J. Chem. Thermodynamics $1969,1,345$. ${ }^{i}$ Critical review of Gurvich et al. (ref 20). ${ }^{j} \mathrm{MP} 4 /($ various basis sets yielding an approximation of $6-311 \mathrm{G}+(2 \mathrm{df}, \mathrm{p})) / / \mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d})(\mathrm{ref} 25) .{ }^{k} \mathrm{HF} /$ $6-31 \mathrm{G}(\mathrm{d})$ (ref 40). ${ }^{l} \mathrm{G}-2$ calculation, this work.

